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INTRODUCTION MODEL DESCRIPTION

There are currently several software programs The application of the split-step method to
that model radiowave propagation over model tropospheric radiowave propagation over
irregular terrain. These models use a the ocean has been well documented (6),(7).
combination of spherical earth diffraction, The problem becomes somewhat more complicated
multiple knife-edge diffraction, wedge- when applying this same technique to model
diffraction, and geometrical optics to arrive radiowave propagation over irregular terrain.
at a solution for the field for a given
transmitter/receiver geometry and a specified In the following formulation, the atmosphere
terrain path. More recently, parabolic is assumed to vary in range and height only,
equation (PE) methods have been applied to making the field equations independent of
model propagation over terrain, such as that azimuth. Beginning with the parabolic
developed by Levy 4-4j equation derived by Fock and after making the

envelope transformation (8), the equation
The most familiar or well-known of these that must be solved is
models is the Longley-Rice model (2). This
modql was designed for low-altitude _ 21k.- k'(n-l)ý -0 (1)
propagation and works fairly well for s 2
diffraction and near-diffraction regions. A
site-specific propagation model for general where k, is the free-space wavenumber, n is
terrain, called SEKE, was developed at the index of refraction, 4, represents a
Lincoln Laboratory, Ayasli (3). This model scalar component of the electric field, and x
is based on the assumption that the and z are the spatial cartesian coordinates
propagation loss over any path (in the corresponding to range and height,
frequency range from VHF to X-band) can be respectively.
approximated by one of the multipath,
multiple knife-edge diffraction, or spherical For propagation over terrain, and assuming
earth diffraction losses alone, or a weighted horizontal polarization, equ. (1) is subject
average of these three basic losses. Another to the range-dependent boundary condition,
model, developed at Ohio State University, p(x,z-f(x)) - 0, where f(x) is a general
Luebbers (4), is based on the geometrical function describing the terrain. A
theory of diffraction (GTD) and works by transformation is made according to Beilis
determining the existing rays, for a given and Tappert (9), which generalizes the
height/receiver geometry and terrain profile, "earth curvature" transformation, and
from a family of 16 ray types. The total effectively maps the range-dependent
field at the target is then found by adding "terrain" coordinate system to a flat or
the ray amplitudes from each possible ray. smooth earth coordinate system. This results

in a "modified" parabolic equation subject to
Each of these models has various limitations, the simpler boundary condition that the field
but the main limitation they all share, with vanishes at the surface - which is now range-
the exception of the PC model, is the independent in the new coordinate system.
inability to handle ducting or non-standard This problem can then be easily solved by
range-dependent environmental conditions. using the split-step method as described in
SEKE allows a variable earth iadius factor, (6).
but this assumes a constant gradient and
horizontal homogeneity. Some of the The transformation is made by introducing a

literature regarding GTD has stated that this change of variables. Let
method can be extended to inhomogensous x-r
media, but this author has not seen any 8 - s-f(x)
published results for such cases.

The PC model from (1), called FDPEN (Finite where
Difference Parabolic Equation Model) is able xl
to handle range-dependent, duoting 1(m) a
conditions. As the name implies, It solves
the parabolic equation by using finite and define the sealar component of the field
difference techniques. However,
computationally, finite difference methods in terms of the new coordinate system:
can be time consuming. k(xs) * t(f,5)edJ. (2)

This paper presents an efficient method by
Vhioh one can determine the field at any The function tba) describes the actual
point above the earth's surface in the terrain and can be any digitited set of
presence of range-dependent atmospheric height/range points. x4/Ia (where a is the
conditions. The model is based on the split- arth's radius) takes into account the
step Fourier algorithm developed by Hardin earth's curvature.
and Tappert (5) to solve the parabolic
equation. Comparisons are made against t ition of ic equatou
measured data and the above mentioned models. the modified parabolic equation
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i)k•- • k.'(AZl} - i ! oenvironment over Ea at Antila. |,rr[1.v 1,gS" •" (3) loss is indicated by the diffterent i:,r

: r1'(2 ((x)) -22 (t''(x) J shades and the antenna Is |• dt(,d ,;,, t ,o-
a above the ground.

with the new boundary condition, ý(,O) 0. Since equ. (3) does not allow foi propajal i

t-'(x) in equ. (3) represents the second over vertical obstacles, such as cliffi, oi
partial derivative with respect to x. Notice buildings ( t''(x) will be undefined for s,'.

in comparing equ. (3) with equ. (1), the cases ), a special case can be made by

inclusion of an arbitrary terrain has simply eliminating the field immediately
effectively produced a "new" lmodified adjacent to such obstacles and propagating

refractive index. This is consistent with the field forward as usual. This does not

the modified refractivity, or M-unit, violate any conditions in the split-step

normally used in tropospheric wave model as the PE approximation inherently

propagation over the ocean, which was derived neglects backscatter. Figure 6 shows a

to take into account the earth's curvature, coverage diagram for such a case. Excellent

The split-step Fourier method is then applied agreement was found when compared against

to give the solution of the field at discrete FDPEM.
range steps for all target heights under
consideration. CONCLUSIONS

This method offers a numerically efficient, A numerically efficient method has been

full wave solution to the field because of .presented to model tropospheric radiowave

the implementation of the Fast Fourier propagation over irregular terrain in the

Transform (FFT) in the computer model. presence of range-dependent non-standard

Computer execution times increase for environmental conditions. Results from this

increasing frequency and/or large propagation model were compared against measured data and

angles, i.e., steep terrain slopes. However, other existing models and was shown to give

the split-step method remains more efficient excellent agreement. This work is in the

than finite difference techniques for these public domain.
extreme cases.
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atmosphere over the terrain shown. for standard atmosphere over the terrain
Transmitter height is at 18.3 meters above the shown. Transmitter height is at 1.36 meters
ground at 0 range. Receiver range is at 35.5 above ground at 0 range. Receiver range is at
km. 6.6 km.

Environmental Profile
Gila Bend A B Sentinel Range-dependent Ducling Atmosphere - Gila Bend to Sentinel60 ' ,

100

TPEM
-• -TPEM smooth earth /

so * measured
-0 - free space I

~30

SI :

0 - 2 0 40 -0--20-- -- 20-- -- 20"- .- 20--

M-units /

TMANSIAITTER
TOWER Terrain Profile 20 --

00-- , I
• -40 -30 -20 -10 0 10

PROPAGATION FACTOR (dB)

30

0
0 RAN06 (km) 43

Figure 3. Terrain and environmental profiles Figure 4. Compariavn between TPEN for actual
for Figure 4. Arrows indicate location of terrain, TPrJ for smooth earth, and measured
meteorological measurements. data.



East Angli a with duct ing t''i re

320-' ' I ~ f~f

I VI (INGI deq N,-1

240 18 300172
hag r

St Rarde ktmos r

588- TPEM Ver: I .x
FREQ MHz 1880.8
POLARIZATION HOR

408- ANT TYP GAUSS
/1 . ER BU deg 4.8

e ~ /ELI ANG deg 8.8

8 28 48 68 80 188
Range kmn

LOSS 8 1 10 115=120=125i 130 135in140=145n15OW155 d B

Figure 6. Coverage diaq.& lo,- flat topped block centered at 50 km.


